
 UNIT -6

 Abstract class and Interface

Abstract class

A class which is declared with the abstract keyword is known as

an abstract class in Java. It can have abstract and non-abstract

methods (method with the body).

Abstract class: is a restricted class that cannot be used to create objects

(to access it, it must be inherited from another class.

Abstraction in Java

Abstraction is a process of hiding the implementation details
and showing only functionality to the user.

 It shows only essential things to the user and hides the internal
details, for example, sending SMS where you type the text and
send the message. You don't know the internal processing about
the message delivery.

Abstraction lets you focus on what the object does instead of how
it does it.

Ways to achieve Abstraction

There are two ways to achieve abstraction in java

https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/object-and-class-in-java

1. Abstract class

2. Interface

Abstract class in Java

A class which is declared with the abstract keyword is known as

an abstract class in Java. It can have abstract and non-abstract

methods (method with the body).

Points to Remember

o An abstract class must be declared with an abstract

keyword.

o It can have abstract and non-abstract methods.

o It cannot be instantiated.

o It can have constructors and static methods also.

o It can have final methods which will force the subclass not to

change the body of the method.

Abstract Method in Java

A method which is declared as abstract and does not have
implementation is known as an abstract method.

Example of abstract method

1. abstract void printStatus();//no method body and abstract

https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/java-constructor

Example of Abstract class that has an

abstract method

In this example, Bike is an abstract class that contains only one
abstract method run. Its implementation is provided by the
Honda class.

1. abstract class Bike

2. {

3. abstract void run();

4. }

5. class Honda4 extends Bike

6. {

7. void run()

8. {

9. System.out.println("running safely");

10. }

11. public static void main(String args[])

12. {

13. Bike obj = new Honda4();

14. obj.run();

15. }

16. }

Output

running safely

Another example of Abstract class

1. abstract class Shape

2. {

3. abstract void draw();

4. }

5. //In real scenario, implementation is provided by others i.e. unkn

own by end user

6. class Rectangle extends Shape

7. {

8. void draw()

9. {

10. System.out.println("drawing rectangle");

11. }

12. }

13. class Circle1 extends Shape

14. {

15. void draw()

16. {

17. System.out.println("drawing circle");}

18. }

19. //In real scenario, method is called by programmer or user

20. class TestAbstraction1

21. {

22. public static void main(String args[])

23. {

24. Shape s=new Circle1();//In a real scenario, object is provided

through method, e.g., getShape() method

25. s.draw();

26. }

27. }

Output

drawing circle

In this example, Shape is the abstract class, and its

implementation is provided by the Rectangle and Circle classes.

Interface in Java

An interface in Java is a blueprint of a class. It has static

constants and abstract methods.

The interface in Java is a mechanism to achieve abstraction.

There can be only abstract methods in the Java interface, not

method body. It is used to achieve abstraction and

multiple inheritance in Java.

You can say that interfaces can have abstract methods and

variables. It cannot have a method body.

Why use Java interface?

There are mainly three reasons to use interface. They are given
below.

o It is used to achieve abstraction.

o By interface, we can support the functionality of multiple

inheritance.

o It can be used to achieve loose coupling.

How to declare an interface?

An interface is declared by using the interface keyword. It

provides total abstraction; means all the methods in an interface
are declared with the empty body, and all the fields are public,

https://www.javatpoint.com/abstract-class-in-java
https://www.javatpoint.com/inheritance-in-java

static and final by default. A class that implements an interface
must implement all the methods declared in the interface.

Syntax:

1. interface <interface_name>

2. {

3. Int x;

4. Void somefunction();

5.

6. // declare constant fields

7. // declare methods that abstract

8. // by default.

9. }

Properties of interface

1. Interface must be declared with the key word ‘interface’.

2. All interface methods are implicitly public and abstract. In another
words you don’t need to actually type the public or abstract modifiers
in the method declaration, but method is still always public and
abstract
.

3. All variables defined in an interface are public, static, and final. In
another words, interfaces can declare only constants, not instance
variables.
4. Interface methods must not be static.

5. Because interface methods are abstract, they cannot be marked final,

strictfp, or native.

6. An interfaces can extend one or more other interfaces.

7. An interface cannot implement another interface or class.

8. Interface types can be used polymorphically.

Extending Interfaces

An interface contains variables and methods like a class but the methods in
an interface are abstract by default unlike a class. An interface extends
another interface like a class implements an interface in interface
inheritance.

A program that demonstrates extending interfaces in Java is given as
follows:

Example

interface A {

 void funcA();

}

interface B extends A {

 void funcB();

}

class C implements B {

 public void funcA() {

 System.out.println("This is funcA");

 }

 public void funcB() {

 System.out.println("This is funcB");

 }

}

public class Demo {

 public static void main(String args[]) {

 C obj = new C();

 obj.funcA();

 obj.funcB();

 }

}

Output

This is funcA

This is funcB

Now let us understand the above program.

The interface A has an abstract method funcA(). The interface B extends
the interface A and has an abstract method funcB(). The class C
implements the interface B. A code snippet which demonstrates this is as
follows:

Implementing Interface in Java with
Example

An interface is used as “superclass” whose properties are inherited by a
class. A class can implement one or more than one interface by using a
keyword implements followed by a list of interfaces separated by commas.

When a class implements an interface, it must provide an implementation
of all methods declared in the interface and all its super interfaces.

An interface is used as “superclass” whose properties are inherited by a
class. A class can implement one or more than one interface by using a
keyword implements followed by a list of interfaces separated by commas.

When a class implements an interface, it must provide an implementation
of all methods declared in the interface and all its super interfaces.

When implementation interfaces, there are several rules −

• A class can implement more than one interface at a time.

• A class can extend only one class, but implement many interfaces.

• An interface can extend another interface, in a similar way as a class
can extend another class.

Java Interface Example/Implementing

Interfaces

In this example, the Printable interface has only one method, and
its implementation is provided in the A6 class.

1. interface printable

2. {

3. void print(); // method prototype

4. }

5. class A6 implements printable

{

6. public void print()

7. {

8. System.out.println("Hello");

9. }

10.

11. public static void main(String args[])

12. {

13. A6 obj = new A6();

14. obj.print();

15. }

16. }

Output:

Hello

Difference between abstract class and interface

Abstract class and interface both are used to achieve abstraction
where we can declare the abstract methods. Abstract class and
interface both can't be instantiated.

But there are many differences between abstract class and
interface.

Abstract class Interface

1) Abstract class can have abstract

and non-abstract methods.

Interface can have only abstract methods.

Since Java 8, it can have default and

static methods also.

2) Abstract class doesn't support

multiple inheritance.

Interface supports multiple inheritance.

3) Abstract class can have final, non-

final, static and non-static

variables.

Interface has only static and final

variables.

4) Abstract class can provide the

implementation of interface.

Interface can't provide the

implementation of abstract class.

5) The abstract keyword is used to

declare abstract class.

The interface keyword is used to declare

interface.

6) An abstract class can extend

another Java class and implement

multiple Java interfaces.

An interface can extend another Java

interface only.

7) An abstract class can be extended

using keyword "extends".

An interface can be implemented using

keyword "implements".

8) A Java abstract class can have

class members like private, protected,

etc.

Members of a Java interface are public by

default.

9)Example:

public abstract class Shape{

public abstract void draw();

}

Example:

public interface Drawable{

void draw();

}

Example of abstract class and interface in Java

Let's see a simple example where we are using interface and abstract class both.

1. //Creating interface that has 4 methods

2. interface A

3. {

4. void a();//by default, public and abstract

5. void b();

6. void c();

7. void d();

8. }

9.

10. //Creating abstract class that provides the implementation of one method of A interface

11. abstract class B implements A

12. {

13. public void c()

14. {

15. System.out.println("I am C");

16. }

17. }

18.

19. //Creating subclass of abstract class, now we need to provide the implementation of rest of the methods

20. class M extends B

21. {

22. public void a()

23. {

24. System.out.println("I am a");

25. }

26. public void b()

27. {

28. System.out.println("I am b");

29. }

30. public void d()

31. {

32. System.out.println("I am d")

33. ;}

34. }

35.

36. //Creating a test class that calls the methods of A interface

37. class Test5

38. {

39. public static void main(String args[])

40. {

41. A a=new M();

42. a.a();

43. a.b();

44. a.c();

45. a.d();

46. }

47. }

Output:

 I am a

 I am b

 I am c

 I am d

Multiple inheritance in Java by interface

Multiple Inheritance is a feature of object oriented concept, where a class

can inherit properties of more than one parent class. The problem occurs

when there exist methods with same signature in both the super classes

and subclass. On calling the method, the compiler cannot determine which

class method to be called and even on calling which class method gets

the priority.

If a class implements multiple interfaces, or an interface extends
multiple interfaces, it is known as multiple inheritance.

1. interface Printable

2. {

3. void print();

4. }

5. interface Showable

6. {

7. void show();

8. }

9. class A7 implements Printable,Showable

10. {

11. public void print()

12. {

13. System.out.println("Hello");

14. }

15. public void show()

16. {

17. System.out.println("Welcome");

18. }

19.

20. public static void main(String args[])

21. {

22. A7 obj = new A7();

23. obj.print();

24. obj.show();

25. }

26. }

Output:Hello

 Welcome

Java packages

A java package is a group of similar types of classes, interfaces
and sub-packages.

Package in java can be categorized in two form, built-in package
and user-defined package.

• Built-in Packages (packages from the Java API)
• User-defined Packages (create your own packages)

Built-in Packages

These packages consist of a large number of classes which are
a part of Java API.Some of the commonly used built-in packages

are:
1) java.lang: Contains language support classes(e.g classed
which defines primitive data types, math operations). This
package is automatically imported.
2) java.io: Contains classed for supporting input / output
operations.
3) java.util: Contains utility classes which implement data
structures like Linked List, Dictionary and support ; for Date /
Time operations.
4) java.applet: Contains classes for creating Applets.
5) java.awt: Contain classes for implementing the components
for graphical user interfaces (like button , ;menus etc).
6) java.net: Contain classes for supporting networking
operations.

User-defined packages

These are the packages that are defined by the user. First we
create a directory myPackage (name should be same as the
name of the package). Then create the MyClass inside the
directory with the first statement being the package names.

Advantage of Java Package

1) Java package is used to categorize the classes and interfaces
so that they can be easily maintained.

2) Java package provides access protection.

3) Java package removes naming collision.

Naming conventions

Java naming convention is a rule to follow as you decide what to
name your identifiers such as class, package, variable, constant,
method, etc.

But, it is not forced to follow. So, it is known as convention not
rule. These conventions are suggested by several Java
communities such as Sun Microsystems and Netscape.

All the classes, interfaces, packages, methods and fields of Java
programming language are given according to the Java naming
convention. If you fail to follow these conventions, it may
generate confusion or erroneous code.

Advantage of naming conventions in java

By using standard Java naming conventions, you make your code
easier to read for yourself and other programmers. Readability of

Java program is very important. It indicates that less time is
spent to figure out what the code does.

The following are the key rules that must be followed by every
identifier:

o The name must not contain any white spaces.

o The name should not start with special characters like &

(ampersand), $ (dollar), _ (underscore).

Package

o It should be a lowercase letter such as java, lang.

o If the name contains multiple words, it should be separated

by dots (.) such as java.util, java.lang.

Example :-

1. package com.javatpoint; //package

2. class Employee

3. {

4. //code snippet

5. }

Creating Packages

To create a package, follow the steps given below:

o Choose a package name according to the naming

convention.

o Write the package name at the top of every source file

(classes, interface, enumeration, and annotations).

o Remember that there must be only one package statement

in each source file.

o package mypack; //package declaration
o class MyPackageClass //class definition
o {
o public static void main(String[] args)
o {
o System.out.println("This is my package!");
o }

To create a package, follow the steps

given below:

1) Declare the package at the beginning of a file using the form package

packagname;

2) Define the class that is to be put in the package and declare it public.

3) Create a subdirectory under the directory where the main source files are

stored.

4) Store the listing as the classname.Javafile in the subdirectory created.

5) Compile the file.This creates.classfile in the subdirectory.

Adding Classes to Packages

In order to put add Java classes to packages, you must do two things:

1. Put the Java source file inside a directory matching the Java package
you want to put the class in.

2. Declare that class as part of the package.

Putting the Java source file inside a directory structure that matches the
package structure, is pretty straightforward. Just create a source root
directory, and inside that, create directories for each package and

subpackage recursively. Put the class files into the directory matching the
package you want to add it to.

When you have put your Java source file into the correct directory
(matching the package the class should belong to), you have to declare
inside that class file, that it belongs to that Java package. Here is how you
declare the package inside a Java source file:

package com.jenkov.navigation;

public class Page {

 ...

}

The first line in the code above (in bold) is what declares the class Page as

belonging to the package com.jenkov.navigation.

 Static Import

Static import is a feature introduced in Java programming language

(versions 5 and above) that allows members (fields and methods)

defined in a class as public static to be used in Java code without

specifying the class in which the field is defined.

The static import feature of Java 5 facilitate the java

programmer to access any static member of a class directly.

There is no need to qualify it by the class name.

Advantage of static import:
o Less coding is required if you have access any static

member of a class oftenly.

Disadvantage of static import:

o If you overuse the static import feature, it makes the

program unreadable and unmaintainable.

Simple Example of static import
1. import static java.lang.System.*;

2. class StaticImportExample{

3. public static void main(String args[])

4. {

5.

6. out.println("Hello");//Now no need of System.out

7. out.println("Java");

8.

9. }

10. }
Output:Hello

 Java

